May 10 (Lecture 2)

Overview: Today we'll keep working with vectors in \mathbb{R}^n , in particular noting some geometric aspects of vectors.

Learning Goals:

- Correctly define and do basic operations with vectors in \mathbb{R}^n .
- Use the dot product to compute lengths of and angles between vectors.

As you're getting settled:

- You should have received an e-mail for "Homework 0", which is a practice assignment for submitting to Crowdmark! Give it a shot.
- Homework 1 will be released tomorrow morning and due next Tuesday (at **11:30 pm** sharp).
- Office Hours schedule! (Also posted on Brightspace)
 - Mondays: Ц:30 5:30pm
 - Wednesdays: 1:30 2:30pm
 - Fridays: 11:30-12:30pm

Length/Angles of Vectors: The Dot Product

 ρ . 60 **Definition.** Let $\vec{x} \in \mathbb{R}^n$. The *norm* of \vec{x} , denoted by $\|\vec{x}\|$, is

Example. • In \mathbb{R}^{4} : If $\tilde{X} = \begin{bmatrix} 2\\ 1\\ -3 \end{bmatrix}$, then $\|\tilde{X}\| = \sqrt{\lambda^{2} + 0^{2} + 1^{2} + (-3)^{2}} = \sqrt{4 + 1 + 9}$

Find the distance between

$$P(1,1,1) \text{ and } Q(a,0,-3)$$
in \mathbb{R}^{3} .

$$I|\overline{o}p|I = ||\begin{bmatrix} 1\\ 1\\ -\end{bmatrix} - \begin{bmatrix} 2\\ 0\\ -3 \end{bmatrix}|| = ||\begin{bmatrix} -1\\ 4\\ -\end{bmatrix}||$$

$$= \sqrt{1+1+16}$$

$$= \sqrt{18}$$

$$= 3\sqrt{a}$$

σ

Definition. A vector $\vec{x} \in \mathbb{R}^n$ is called a *unit vector* when $\|\vec{x}\| = 1$. p.61

Question. What's the angle between two vectors in \mathbb{R}^2 ?

This fancy quantity looks like it could be important, so let's name it.

Definition. Two vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$ are orthogonal when $\vec{\chi} \cdot \vec{\eta} = 0$ p. 62 Example. $I_{n} \ \mathbb{R}^{5}: \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \circ \begin{bmatrix} -1 \\ -1 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -2 - 3 + 5 = 0 \end{bmatrix} = (1)(0) + (3)(-1) + (4)(0) + (5)(1)$ * These the vectors are orthogonal! P.60-61 **Theorem.** (1.5.1, 1.5.2) For every $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$, $s, t \in \mathbb{R}$, we have: • $\vec{x} \cdot \vec{x} = \|\vec{x}\|^2 > 0.$ *• $\vec{x} \cdot \vec{x} = 0$ if and only if $\vec{x} = \vec{0}$. • $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$. Symmetric Property • $\vec{x} \cdot (s\vec{y} + t\vec{z}) = s\vec{x} \cdot \vec{y} + t\vec{x} \cdot \vec{z}$. (inearily) \bullet $\|\vec{x}\| \ge 0$ and $\|\vec{x}\| = 0$ if and only if $\vec{x} = \vec{0}$. • $||t\vec{x}|| = |t| ||\vec{x}||.$ • $|\vec{x} \cdot \vec{y}| \leq ||\vec{x}|| \, ||\vec{y}||$. "Couchy Schwerz inequality" • $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$. $\leftarrow \underline{\text{Trangle Inequality!}}$ **Example.** Let $\vec{x} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$, $\vec{y} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, and suppose that \vec{z} is such that $\vec{x} \cdot \vec{z} = 0$. Compute $\vec{x} \cdot (3\vec{z} - \vec{y})$ Linearity Property: $\vec{X} \cdot (3\vec{z} - \vec{y}) = 3(\vec{x} \cdot \vec{y}) - \vec{X} \cdot \vec{y} = -\begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -(2+0+1)$

Hint: De can't divide by a vector!

Note: Need to be Same Rh und it not it isn't defined

$$\sum_{\substack{n \text{ or } n \xrightarrow{1}}} \frac{n \text{ or } n \xrightarrow{1}}{n}$$
Example. Find a unit vector in the same direction as $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$.
Divide \vec{x} by $\||\vec{x}\|| = \sqrt{1+4+9} = \sqrt{14}$: $\frac{1}{\|\vec{x}\|} = \frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$.
Ts it a unit vector? y_{eg} .
 $\||\vec{x}\| = \frac{1}{\sqrt{14}} \circ \||\vec{x}\|| = 1$.

Projections in \mathbb{R}^n

noted perp

Often we want to find out "how much of one vector is in the direction of another vector". Booed on our picture, y= Kx+2. What is K? XI Take the dot product on both sides with K: Ŋ $\vec{x} \cdot \vec{y} = \vec{x} (k \cdot \vec{x} + \vec{z}) = k \cdot \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{z} = k \| \vec{x} \|^{2}$ $=> K_{=} \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^2} = \frac{\vec{x} \cdot \vec{y}}{\vec{z} \cdot \vec{y}},$ x Ň 55, $\tilde{y} = \left(\frac{\tilde{x} \cdot \tilde{y}}{\|\tilde{x}\|^2}\right) \tilde{x} + \left(\begin{array}{c} \text{some Vector} \\ \text{orthogonal to } \tilde{x} \end{array}\right).$

Definition. Let $x, y \in \mathbb{R}$... \vec{x} , denoted $\operatorname{proj}_{\vec{x}}(\vec{y})$, is the vector $\begin{pmatrix} \vdots & \vdots & \vdots \\ || & \chi ||^2 \end{pmatrix}$, $\vec{\chi}$. (scalar Multiplication) P.64 The projection of \vec{y} orthogonal to \vec{x} (or perpendicular part), de-

$$y_{\vec{x}}(\vec{y})$$
, is the vector $\vec{y} - \left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^2}\right) \vec{X} \rightarrow dot$ product to
10 Fero.

Example. Let
$$\vec{x} = \begin{bmatrix} 4\\3 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} 1\\5 \end{bmatrix}$. Compute $\operatorname{proj}_{\vec{x}}(\vec{y})$, $\operatorname{proj}_{\vec{y}}(\vec{x})$,
and $\operatorname{perp}_{\vec{x}}(\vec{y})$.
 $\operatorname{proj}_{\vec{x}}(\vec{y}) = \underbrace{\left[\frac{4}{3}\right] \circ \left[\frac{5}{5}\right]}_{16+4} \begin{bmatrix} 4\\3 \end{bmatrix} = \frac{14}{35} \begin{bmatrix} 4\\3 \end{bmatrix} =$