May 10 (Lecture 2)

Overview: Today we'll keep working with vectors in \mathbb{R}^n , in particular noting some geometric aspects of vectors.

Learning Goals:

- Correctly define and do basic operations with vectors in R*ⁿ*.
- Use the dot product to compute lengths of and angles between vectors.

As you're getting settled:

- You should have received an e-mail for "Homework 0", which is a practice assignment for submitting to Crowdmark! Give it a shot.
- Homework 1 will be released tomorrow morning and due next Tuesday (at $11:30 \text{ pm sharp}$).
- Office Hours schedule! (Also posted on Brightspace)
	- Mondays: 4:30 5:30pm
	- Wednesdays: 1:30 2:30pm
	- Fridays: 11:30- 12:30pm

Length/Angles of Vectors: The Dot Product

 φ . 60 **Definition.** Let $\vec{x} \in \mathbb{R}^n$. The *norm* of \vec{x} , denoted by $\|\vec{x}\|$, is

$$
\|\vec{\chi}\| = \sqrt{x_i^2 + x_2^2 + \ldots + x_n^2} = \sqrt{\frac{x_i^2}{2! - x_i^2}}
$$

" The ab. value in IR

in R."

is the norm of a vector

\ l4.

Example.
\n
$$
\circ
$$
 $\text{Im } \mathbb{R}^4 : \mathbb{I} \times \mathbb{I} \times \mathbb{I} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix} + \text{Im } \mathbb{I} \times \mathbb{I} = \sqrt{2^2 + 0^2 + 1^2 + (-3)^2} = \sqrt{4 + 1 + 9}$

Find *k* distance between
\n
$$
P(1,1,1)
$$
 and $Q(a,0,-3)$
\n $\overline{P(a,0,-3)}$
\n $P(1,1,1)$ and $Q(a,0,-3)$
\n $P(1,1,1)$
\n $P($

 $\ddot{\mathbf{0}}$

Definition. A vector $\vec{x} \in \mathbb{R}^n$ is called a *unit vector* when $\|\vec{x}\|$ =1. ϕ . 6

Question. What's the angle between two vectors in \mathbb{R}^2 ?

$$
\int_{0}^{x_{1}}\frac{1}{x}=\frac{1}{x_{1}}\frac{1}{x_{2}}-\frac{1}{x_{3}}\frac{1}{x_{1}}-\frac{1}{x_{2}}\frac{1}{x_{3}}-\frac{1}{x_{4}}\frac{1}{x_{5}}\frac{1}{x_{6}}\frac{1}{x_{1}}-\frac{1}{x_{1}}\frac{1}{x_{2}}-\frac{1}{x_{2}}\frac{1}{x_{1}}\frac{1}{x_{1}}-\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}-\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}-\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{2}}\frac{1}{x_{3}}\frac{1}{x_{4}}\frac{1}{x_{5}}\frac{1}{x_{6}}\frac{1}{x_{6}}\frac{1}{x_{7}}\frac{1}{x_{8}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{2}}\frac{1}{x_{1}}\frac{1}{x_{1}}\frac{1}{x_{2}}\frac{1}{x_{1}}\frac{1}{
$$

This fancy quantity looks like it could be important, so let's name it.

ρ.60 **Definition.** Let
$$
\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}
$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ be vectors in Rⁿ. The
\n*dot product* (or *scalar product*) of \vec{x} with \vec{y} , denoted $\vec{x} \cdot \vec{y}$, is
\n $\vec{\chi} \cdot \vec{y} = x_1y_1 \dots x_ny_n = \begin{bmatrix} \sum_{i=1}^{n} x_i y_i \\ \sum_{i=1}^{n} x_i y_i \end{bmatrix}$
\nSo, for vectors not just in R² but in any Rⁿ, we have:
\n $\begin{bmatrix} \vec{x} \cdot \vec{y} = \|\vec{x}\| \cdot \|\vec{y}\| \cos \theta \\ \frac{1}{\sqrt{3}} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 0 \\ \frac{1}{\sqrt{3}} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 + \lambda - \lambda + \alpha = \boxed{9} \\ 0 + \lambda - \lambda + \alpha = \boxed{9} \end{bmatrix}$
\n**6** $\begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ \frac{1}{\sqrt{3}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix}$

o ÖER" is orthogonal to euer vector in
$$
\mathbb{R}^n
$$

 ϕ . $\forall \phi$ **Definition.** Two vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$ are *orthogonal* when $\vec{\chi} \cdot \vec{y} = 0$ Example. **Theorem.** (1.5.1, 1.5.2) For every $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$, $s, t \in \mathbb{R}$, we *have:* • $\vec{x} \cdot \vec{x} = ||\vec{x}||^2 > 0.$ $\star \bullet \ \vec{x} \cdot \vec{x} = 0 \ \text{if and only if } \vec{x} = \vec{0}.$ $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$. \leftarrow Symmetric Property $\vec{x} \cdot (s\vec{y} + t\vec{z}) = s\vec{x} \cdot \vec{y} + t\vec{x} \cdot \vec{z}. \leftarrow$ "Linearity"! $\star \bullet \| \vec{x} \| \geq 0$ *and* $\|\vec{x} \| = 0$ *if and only if* $\vec{x} = \vec{0}$ *.* \bullet $||t\vec{x}|| = |t| ||\vec{x}||.$ $\|\vec{x} \cdot \vec{y}\| \leq \|\vec{x}\| \|\vec{y}\|.$ "Conchy Schwerz inequality" $\|\vec{x} + \vec{y}\| \leq \|\vec{x}\| + \|\vec{y}\|.$ **Example.** Let $\vec{x} =$ $\sqrt{2}$ 4 2 $\overline{0}$ -1 3 $|, \vec{y} =$ $\sqrt{2}$ 4 1 1 -1 3 $\Big\}$, and suppose that \vec{z} is such that $\vec{x} \cdot \vec{z} = 0$. Compute $\vec{x} \cdot (3\vec{z} - \vec{y})$. In R $\begin{bmatrix} 1 \\ 2 \\ 3 \\ -1 \\ -0 \\ 0 \end{bmatrix}$ o $\begin{bmatrix} 0 \\ -1 \\ -1 \\ 0 \\ -2 \end{bmatrix}$ = (1) (0) + (2) (- Il ⁺ (3)(- 1) ⁺ (41101+15111) $= -2 - 3 + 5 = 0$ $\begin{array}{r} \mathcal{A}_{\alpha}^{\alpha}(\mathcal{A}_{\alpha}) & -5 - 1 \\ \mathcal{A}_{\alpha}^{\alpha}(\mathcal{A}_{\alpha}) & \mathcal{A}_{\alpha}^{\alpha}(\mathcal{A}_{\alpha}) \end{array}$ if $\mathcal{A}_{\alpha}^{\alpha}(\mathcal{A}_{\alpha})$ are orthogonal! $P.60 - 61$ 。
y /(Triangle Inequality ! I ^ + د
را Linearity Property: $\vec{x} \cdot (3\vec{z} - \vec{y}) = 3(\vec{x}\cdot\vec{x}) X \cdot \overrightarrow{y} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \circ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = (2+0+1)$ $(\frac{3}{2}, \frac{4}{4}) - \frac{3}{2}$, $\frac{3}{4} = -\left[\begin{array}{c} 2 \\ 0 \\ -1 \end{array}\right] \cdot \left[\begin{array}{c} 1 \\ -1 \\ -1 \end{array}\right] = -$ 3

Hint: De can't
divide by a vector!

Note: Need to be Same Rh, and if not it isn't defined

Example. Find a unit vector in the same direction as
$$
\vec{x} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}
$$
.
\nDivide \vec{x} by $||\vec{x}|| = \sqrt{1+4+9} = \sqrt{14}$: $\frac{1}{||\vec{x}||} \vec{x} = \frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$.
\n $\begin{aligned}\n\text{Divide } \vec{x} \text{ by } ||\vec{x}|| = \sqrt{1+4+9} = \sqrt{14} = \sqrt{14} = \frac{1}{\sqrt{14}} = \$

Projections in \mathbb{R}^n

Often we want to find out "how much of one vector is in the direction of another vector". Bosed on our picture, $\vec{y} = k\vec{x} + \vec{z}$. What is k ? χ_1 Take the dot product on both sides vith &: $\vec{x} \cdot \vec{y} = \vec{x} (k \vec{x} + \vec{z}) = k \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{z} = k ||\vec{x}||^2$
= $||\vec{z}||^2$ $\hat{\vec{x}}$ $\Rightarrow k = \frac{\vec{x} \cdot \vec{y}}{||\vec{x}||^2} = \frac{\vec{x} \cdot \vec{y}}{\vec{x} \cdot \vec{y}}$ $\vec{\hat{X}}$ $50, \frac{5}{9} = (\frac{\vec{x} \cdot \vec{y}}{||\vec{x}||^2}) \vec{x} + (36meVectve$

1

Definition. Let $\vec{x}, \vec{y} \in \mathbb{R}^n$ with $\vec{x} \neq \vec{0}$. The projection of \vec{y} onto p.64 $\left(\frac{3.5}{11\frac{2}{11}}\right)$. $\frac{3}{4}$

Vector (scalar Mulliplication) \vec{x} , denoted $\text{proj}_{\vec{x}}(\vec{y})$, is the vector The projection of \vec{y} orthogonal to \vec{x} (or perpendicular part), de- \angle 2 \angle noted $\overline{\text{perp}_{\vec{x}}(\vec{y})}$, is the vector

$$
\overline{y} - \left(\frac{x \cdot y}{\|\vec{x}\|^{2}}\right) \overrightarrow{x} \rightarrow \text{dot product to}
$$

Example. Let
$$
\vec{x} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}
$$
 and $\vec{y} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$. Compute $\text{proj}_{\vec{x}}(\vec{y})$, $\text{proj}_{\vec{y}}(\vec{x})$, and $\text{per}_{\vec{y}}(\vec{y})$.
\nand $\text{per}_{\vec{x}}(\vec{y})$.
\nand $\text{per}_{\vec{x}}(\vec{y})$.
\n $\begin{vmatrix} \frac{3}{2} & \text{proj}_{\vec{x}}(\vec{y}) \\ \frac{3}{2} & \text{proj}_{\vec{x}}(\vec{y}) \end{vmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} \approx \frac{14}{48} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$.
\n $\begin{vmatrix} \frac{3}{2} & \text{proj}_{\vec{x}}(\vec{y}) \\ \frac{3}{2} & \text{proj}_{\vec{x}}(\vec{y}) \end{vmatrix} = \begin{bmatrix} \frac{1}{2} \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \frac{14}{38} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$.
\n $\begin{vmatrix} \frac{1}{2} & \text{proj}_{\vec{x}}(\vec{y}) \\ \frac{1}{2} & \text{proj}_{\vec{x}}(\vec{y}) \end{vmatrix} = \begin{bmatrix} \frac{1}{2} \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \frac{16}{38} \begin{bmatrix} 4 \\ 5 \end{bmatrix}$.
\n $\begin{vmatrix} \frac{1}{2} & \text{proj}_{\vec{x}}(\vec{y}) \\ \frac{1}{2} & \text{proj}_{\vec{x}}(\vec{y}) \end{vmatrix} = \begin{bmatrix} \frac{1}{2} & \text{proj}_{\vec{x}}(\vec{y}) \\ \frac{1}{2} & \text{proj}_{\vec{x}}(\vec{y}) \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \text{proj}_{\vec{x}}(\vec{y}) \\ -\frac{1}{2} & \text{proj}_{\vec{x}}(\vec{y})$