
May 10 (Lecture 2)

Overview: Today we’ll keep working with vectors in Rn, in partic-
ular noting some geometric aspects of vectors.

Learning Goals:

Correctly define and do basic operations with vectors in Rn.

Use the dot product to compute lengths of and angles between
vectors.

As you’re getting settled:

You should have received an e-mail for ”Homework 0”, which
is a practice assignment for submitting to Crowdmark! Give it
a shot.

Homework 1 will be released tomorrow morning and due next
Tuesday (at 11:30 pm sharp).

O�ce Hours schedule! (Also posted on Brightspace)

– Mondays:

– Wednesdays:

– Fridays:

4:30 - 5:30pm

1:30 - 2:30pm
11:30- 12:30pm



Length/Angles of Vectors: The Dot Product

In R, R2, and R3, vectors have obvious “length”:

Definition. Let ~x 2 Rn. The norm of ~x, denoted by k~xk, is

Example.

Definition. A vector ~x 2 Rn is called a unit vector when
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Question. What’s the angle between two vectors in R2?

This fancy quantity looks like it could be important, so let’s name it.

Definition. Let ~x =

2

4
x1
...
xn

3

5 and ~y =

2

4
y1
...
yn

3

5 be vectors in Rn. The

dot product (or scalar product) of ~x with ~y, denoted ~x · ~y, is

So, for vectors not just in R2 but in any Rn, we have:

Example.
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Definition. Two vectors ~x, ~y 2 Rn are orthogonal when

Example.

Theorem. (1.5.1, 1.5.2) For every ~x, ~y, ~z 2 Rn, s, t 2 R, we
have:

~x · ~x = k~xk2 � 0.
~x · ~x = 0 if and only if ~x = ~0.
~x · ~y = ~y · ~x.
~x · (s~y + t~z) = s~x · ~y + t~x · ~z.
k~xk � 0 and k~xk = 0 if and only if ~x = ~0.
kt~xk = |t| k~xk.
|~x · ~y|  k~xk k~yk.
k~x + ~yk  k~xk + k~yk.

Example. Let ~x =

2

4
2
0
�1

3

5, ~y =

2

4
1
1
�1

3

5, and suppose that ~z is such

that ~x · ~z = 0. Compute ~x · (3~z � ~y).
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Example. Find a unit vector in the same direction as ~x =

2

4
1
2
�3

3

5.

Projections in Rn

Often we want to find out “how much of one vector is in the direction
of another vector”.

Definition. Let ~x, ~y 2 Rn with ~x 6= ~0. The projection of ~y onto
~x, denoted proj~x(~y), is the vector

The projection of ~y orthogonal to ~x (or perpendicular part), de-
noted perp~x(~y), is the vector
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Example. Let ~x =


4
3

�
and ~y =


1
5

�
. Compute proj~x(~y), proj~y(~x),

and perp~x(~y).

Examples continued, and applications:
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