
May 6 (Lecture 1)

Overview: Welcome to MATH 211! Today we will give an overview

of the course structure and then get right into some foundational

content: vectors in Rn
!

Learning Goals:

Be familiar and comfortable with the course and assessment

structure.

Correctly define and do basic operations with vectors in Rn
.

As you’re getting settled:

(Here’s where I would normally put notes about course schedul-

ing, etc.)
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Friday's Office tours : 1:00pm - 2:00pm



Let’s remind ourselves about what we know: real numbers!

Sometimes we need more than what we can draw, though:
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Definition. The set of vectors in Rn
is

Example.

Vectors aren’t just for “keeping track” of a collection of real numbers;

their utility comes from the fact that we can combine them!
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Example.

Pictures. For n = 1, 2, 3 we can draw pictures!

Definition. Let ~v1, . . . ,~vk be vectors in Rn
and let c1, . . . , ck be

real numbers. The linear combination of ~v1, . . . ,~vk with scalars

c1, . . . , ck is

Example.
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Question. Why do we call them “linear” combinations?

Answer.
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Theorem (1.4.1). For all ~v, ~w, ~x 2 Rn and s, t 2 R, we have:
1. ~v + ~w 2 Rn

2. ~v + ~w =

3. (~v + ~w) + ~x =

4. There is a vector ~0 (the zero vector) such that
5. For each ~v there is �~v 2 Rn such that
6. t~v 2 Rn

7. s(t~v) =
8. (s + t)~v =

9. t(~v + ~w) =
10. 1~v =

These rules help you do computations not just “concretely” but also

“abstractly”!

Notes.
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More examples.
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