May 6 (Lecture 1)

Overview: Welcome to MATH 211! Today we will give an overview of the course structure and then get right into some foundational content: vectors in \mathbb{R}^n !

Learning Goals:

- Be familiar and comfortable with the course and assessment structure.
- Correctly define and do basic operations with vectors in \mathbb{R}^n .

As you're getting settled:

- (Here's where I would normally put notes about course scheduling, etc.)
- 030 second Stretch break?
- · Friday's Office Hours: 1:00pm 2:00pm

Let's remind ourselves about what we know: real numbers!
Har do We represent real numbers Visually?
$$\xrightarrow{-1}$$
 $\xrightarrow{0}$ $\xrightarrow{1}$ $\xrightarrow{2}$ $\xrightarrow{1}$ $\xrightarrow{1$

Sometimes we need more than what we can draw, though:

length of 200 sea weambers R²⁰⁰
position and momentum of a particle R⁶
oppose and the coords TR⁴
owerage temp. of one million Stams of water R^{1000 000}
Relevance of websites to your search term R^{10ts}

pg. 48 **Definition.** The set of vectors in \mathbb{R}^n is the collection of $\overline{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ where each x_i is a real number. $(x_i \in \mathbb{R})$. In notation $\mathbb{R}^n = \sum_{x_i} \begin{bmatrix} x_i \\ x_i \end{bmatrix}$; $x_i \in \mathbb{R}^n_{\mathcal{I}}$ "where" "where" If $\overline{x} = \begin{bmatrix} x_i \\ x_n \end{bmatrix}$, x_i is the it" component or entry of \overline{x} . If $\overline{x}, \overline{y} \in \mathbb{R}^n$ and each $x_i = y_i$, then \overline{x} and \overline{y} are equal $: \overline{x} = \overline{y}$.

Example. $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ as before! In \mathbb{R}^5 : $\overline{X} = \begin{bmatrix} -\frac{2}{2} \\ -\frac{2}{2} \end{bmatrix} \in \mathbb{R}^5$. If $\overline{y} = \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}$, then $\overline{X} \neq \overline{y}$. (srd and 5th components are not equal).

Vectors aren't just for "keeping track" of a collection of real numbers; their utility comes from the fact that we can combine them!

Definition. Let
$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$
 and let α be a real
number (or a *scalar*).
The sum of \vec{x} and \vec{y} is $\vec{x} + \vec{y} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$. "Vector Addition"
The scalar multiple of \vec{x} by d is $q \vec{x} = \begin{bmatrix} dx_1 \\ \vdots \\ qx_n \end{bmatrix}$. "Scalar multiple color"

In
$$\mathbb{R}^2$$
: $\begin{bmatrix} 1 \\ a \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1+(-2) \\ 2+1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$
Example. $5 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 5(3) \\ 5(1) \end{bmatrix} = \begin{bmatrix} 15 \\ 5 \end{bmatrix}$
 $\begin{bmatrix} 1 \\ a \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \begin{bmatrix} 15 \\ 5 \end{bmatrix} = \begin{bmatrix} 14 \\ 8 \end{bmatrix}$

Definition. Let $\vec{v}_1, \ldots, \vec{v}_k$ be vectors in \mathbb{R}^n and let c_1, \ldots, c_k be p.49 real numbers. The *linear combination* of $\vec{v}_1, \ldots, \vec{v}_k$ with scalars c_1,\ldots,c_k is $e_{X} \xrightarrow{}_{C_1 \circ \overline{V}_1} + C_2 \overline{V}_2^{\dagger} \cdots + C_K \circ \overline{V}_K$ Example. In \mathbb{R}^2 : if $V_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $V_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, $V_3 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$: $C = I = C_2$, $C_3 = 5$, then: $1 \begin{bmatrix} a \\ a \end{bmatrix} + 1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \begin{bmatrix} 15 \\ -5 \end{bmatrix} = \begin{bmatrix} 14 \\ -3 \end{bmatrix}$ linear combination! $I_{n} \mathbb{R}^{4} : \overline{V}_{1} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \overline{V}_{2} = \begin{bmatrix} 2 \\ 2 \\ 4 \\ 0 \end{bmatrix}, C = -1, C_{2} = \frac{1}{2}, \text{ then } : C_{1} \overline{V}_{1} + C_{2} \overline{V}_{2} =$ $\begin{bmatrix} -1 \\ -2 \\ -3 \\ -4 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ -4 \end{bmatrix}$ 3

Question. Why do we call them "linear" combinations?

• What about this line?

$$\vec{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ a_{x+1} \end{bmatrix} = \begin{bmatrix} X_1 \\ a_{x_1} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= X_1 \begin{bmatrix} 1 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= X_1 \begin{bmatrix} 1 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= X_1 \begin{bmatrix} 1 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= X_1 \begin{bmatrix} 1 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= X_1 \begin{bmatrix} 1 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= X_1 \begin{bmatrix} 1 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= X_1 \begin{bmatrix} 1 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

In
$$\mathbb{R}^3$$
:
 $\begin{bmatrix} x_3 \\ + \\ 0 \end{bmatrix} = \begin{bmatrix} x_3 \\ 0 \\ + \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ - \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ - \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ - \\ 0 \end{bmatrix}$

Theorem (1.4.1). For all $\vec{v}, \vec{w}, \vec{x} \in \mathbb{R}^n$ and $s, t \in \mathbb{R}$, we have: 1. $\vec{v} + \vec{w} \in \mathbb{R}^n$ 2. $\vec{v} + \vec{w} = \vec{w} + \vec{v}$ 3. $(\vec{v} + \vec{w}) + \vec{x} = \vec{v} + (\vec{w} + \vec{x})$ 4. There is a vector $\vec{0}$ (the zero vector) such that $\vec{v} + \vec{o} = \vec{v}$. "Additive inverse" $\vec{v} = 5$. For each \vec{v} there is $-\vec{v} \in \mathbb{R}^n$ such that $\vec{v} + (-\vec{v}) = 0$ 6. $t\vec{v} \in \mathbb{R}^n$ 7. $s(t\vec{v}) = (s_t)\vec{v}$ "distributive $\xi = 8. (s + t)\vec{v} = S\vec{v} + t\vec{v}$ plopulies" $9. t(\vec{v} + \vec{w}) = t\vec{v} + t\vec{w}$ 10. $1\vec{v} = \vec{v}$.

These rules help you do computations not just "concretely" but also "abstractly"!

Notes.

• Zievo Vector:
$$\vec{o} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (easy to check) (Not empty?)
• What should $-\vec{v}$ be? If $\vec{v} = \begin{bmatrix} v_1 \\ v_n \end{bmatrix}$, then $-\vec{v} = \begin{bmatrix} -v_1 \\ 0 \\ -v_n \end{bmatrix}$.

· We can use these equations in both "directions",

[Solutions added in "post-production"] C.F. pg. 8-14 in the textbook More examples. "Hot goes through" • Let L be the line between P(D, I) and Q(-2, -1) in \mathbb{R}^2 . Find the vector equation of L. Is R(3, 4) on L? • what is the direction of the line? • we find by a point on the line, say p: [1]. • Vector EQ Gr. L: $\ddot{X} = + [2] + [2] = t = 1 + [2]$

• Find the vector EQ of the plane cathly
$$P(1,2,0)$$
, $Q(2,1,0)$, $R(0,0,1)$. Is $D(0,0,0)$ on the plane?

$$\overrightarrow{RP} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}]$$
Vectors between points in the plane are linear combinations of \overrightarrow{RP} and \overrightarrow{RQ} !
Then, translate by a point in the plane, e.g. $R(0,0,1)!$ so the vector EQ For two plane is

$$\overrightarrow{X}_{1} = S\begin{bmatrix} 2 \\ -1 \end{bmatrix} + t\begin{bmatrix} 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}]$$
The $O(0,0,0)$ in the plane? well if $\overrightarrow{X}_{2} = \overrightarrow{S}_{2} = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$, then:

$$\begin{cases} 0 = 5tat \\ 0 = 1 + 5 + 1 \end{cases}$$
Substract the first EQ from the second:

$$\begin{cases} 0 = 25tat \\ 0 = 1 + 5 + 1 \end{cases}$$
But the $t = S = 0$, so $1 = 0$... which doesn't work!

$$\Rightarrow N_{0}$$
, not in the plane!