May 6 (Lecture 1)

Overview: Welcome to MATH 211! Today we will give an overview of the course structure and then get right into some foundational content: vectors in R*ⁿ*!

Learning Goals:

- Be familiar and comfortable with the course and assessment structure.
- Correctly define and do basic operations with vectors in \mathbb{R}^n .

As you're getting settled:

- (Here's where I would normally put notes about course scheduling, etc.)
- 030 second Stretch break ^P
- ° Friday's Office tours : ¹:00pm 2:00pm

Let's remind ourselves about what we know: real numbers!
\n
$$
4\alpha
$$
 do \sqrt{e} report on $\frac{1}{e}$ numbers. $\sqrt{3}x$ will $\sqrt{3}$

Sometimes we need more than what we can draw, though:

o langth of 200 sea wurnbers $R^{2\infty}$ o position and momentum of a particle R⁶ · opene and to coords TR4 · average temp. of one million grams of water R'000 000 · Retevonce of cretosition la your search term Riots

 $p_9.48$ **Definition.** The set of vectors in \mathbb{R}^n is the collection of $\bar{x} = \begin{bmatrix} x_1 \\ y_2 \end{bmatrix}$ Where each x_i is a real number. $(x_i \in \mathbb{R})$. In notation $R^n = \begin{cases} \begin{cases} x_i \\ y_i \end{cases}$; $x_i \in R_3$
 $\begin{cases} x_i \in R_3 \end{cases}$
 $\begin{cases} x_i \in R_3 \end{cases}$
 $\begin{cases} x_i \in R_4 \end{cases}$
 $\begin{cases} x_i \in R_4 \end{cases}$
 $\begin{cases} x_i \in R_5 \end{cases}$
 $\begin{cases} x_i \in R_6 \end{cases}$ If $\overline{x}, \overline{y}$ \in \mathbb{R}^n and each $x_i = y_i$, tun \overline{x} and \overline{y} are equal: $\overline{x} = \overline{y}$.

Example. $\mathbb{R}_1 \mathbb{R}^2 \mathbb{R}^3$ to before! $\begin{bmatrix} \mathcal{I}_n & \mathbb{R}^5 \end{bmatrix}$ $\bar{X} = \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$ $\in \mathbb{R}^5$. If $\bar{y} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$, then $\bar{x} \neq \bar{y}$ (s^{rd} and s^{tr} components ar

Vectors aren't just for "keeping track" of a collection of real numbers; their utility comes from the fact that we can combine them!

Definition. Let
$$
\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}
$$
, $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$ and let α be a real
number (or a scalar).
Thus $\text{sum of } \vec{x}$ and \vec{y} is $\vec{x} + \vec{y} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$. "Vector Addi-dia"
Thus $\text{Schur multiply of } \vec{x}$ by d is $\alpha \vec{x} = \begin{bmatrix} d^x_1 \\ \vdots \\ d^x_n \end{bmatrix}$. "Nchur multiplyi calio"

$$
\begin{bmatrix} 1 & R^2 : \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 + (-2) \\ 2 + 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}
$$
\nExample.

\n
$$
5 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 5(1) \\ 5(1) \end{bmatrix} = \begin{bmatrix} 15 \\ 5 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \begin{bmatrix} 15 \\ 5 \end{bmatrix} = \begin{bmatrix} 14 \\ 8 \end{bmatrix}
$$

Definition. Let $\vec{v}_1, \ldots, \vec{v}_k$ be vectors in \mathbb{R}^n and let c_1, \ldots, c_k be p.49 real numbers. The *linear combination* of $\vec{v}_1, \ldots, \vec{v}_k$ with scalars c_1, \ldots, c_k is ex. $C_1 \cdot \overline{V}_1 + C_1 \overline{V}_2 + \dots + C_K \cdot \overline{V}_K$ Example. In \mathbb{R}^2 : if $\overrightarrow{V}_1 = \begin{bmatrix} 1 \\ a \end{bmatrix}$, $\overrightarrow{V}_2 = \begin{bmatrix} -a \\ 1 \end{bmatrix}$, $\overrightarrow{V}_3 = \begin{bmatrix} 3 \\ -1 \end{bmatrix} = C = 1 = C_2 + C_3 = 5$, Hen: $1[-a]+1[-a]+5[-3]=[-1]+[-5]=1$ linear combination! In \mathbb{R}^4 : $\overrightarrow{v_1}$ = $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $\overrightarrow{v_2}$ = $\begin{bmatrix} 2 \\ -2 \\ 9 \end{bmatrix}$, $C = -1$, $C_2 = \frac{1}{2}$, $\overrightarrow{+}$ $C_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $C_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $C_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -2 \\ -3 \\ -4 \end{bmatrix}$ + $\begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix}$ = $\begin{bmatrix} 0 \\ -3 \\ -4 \end{bmatrix}$ 3

Question. Why do we call them "linear" combinations?

Answer. Has de le describe this line in \mathbb{R}^2 using vectors? $X_1 = -3/4$ x_1
 $Y_2 = -3/4$ x_1
 $Y_3 = -3/4$ $x_2 = -3/4$
 $Y_4 = -3/4$
 $Y_5 = -3/4$
 $Y_6 = -3/4$
 $Y_7 = -3/4$
 $Y_8 = -3/4$
 $Y_9 = -3/4$
 $Y_1 = -3/4$
 $Y_1 = -3/4$
 $Y_2 = -3/4$
 $Y_3 = -3/4$
 $Y_4 = -3/4$
 $Y_5 = -3/4$
 $Y_6 = -3/4$
 $Y_7 = -$ * Wouldn't have $\begin{bmatrix} 1 \\ -3/4 \end{bmatrix}$ change to line. $0.3/4 \times 1 + 12 = 0$

 $\frac{c_0}{\sqrt{2\pi}} \frac{3x_1 + 4y_2 = 0}{3x_1 + 4y_2 + 0}$ $\bigcup = \left\{ x_1 \bigcap -3/4 \right\}$: $x_1 \in \mathbb{R}$ 3.

a What about this line?
\n
$$
\overrightarrow{\chi} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} \overrightarrow{c} \\ \overrightarrow{c} \end{bmatrix} = \chi_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} \overrightarrow{c} \\ \overrightarrow{c} \end{bmatrix} = \chi_1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} \overrightarrow{c} \\ \overrightarrow{c} \end{bmatrix} = \chi_1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} \overrightarrow{c} \\ \overrightarrow{c} \end{bmatrix} = \chi_1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} \overrightarrow{c} \\ \overrightarrow{c} \end{bmatrix} = \chi_1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} \overrightarrow{c} \\ \overrightarrow{c} \end{bmatrix} = \chi_1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

$$
\begin{array}{ccc}\nI_n & \mathbb{R}^3 & \circ & \circ \\
\hline\n\begin{pmatrix} 1 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \mathbb{R}^3 & \circ \\
\hline\n\begin{pmatrix} 1 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix}} & \mathbb{R}^3 & \circ\n\end{array}\n\qquad\n\begin{bmatrix}\n\begin{pmatrix} 1 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} + \begin{bmatrix} 0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} + \begin{bmatrix} 0 & 0 & 0 \\
0 & 0 & 0\n\end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\
0 & 0 & 0\n\end{bmatrix}
$$

Theorem (1.4.1). For all $\vec{v}, \vec{w}, \vec{x} \in \mathbb{R}^n$ and $s, t \in \mathbb{R}$, we have: 1. $\vec{v} + \vec{w} \in \mathbb{R}^n$ 2. $\vec{v} + \vec{w} = \stackrel{\rightarrow}{\mathsf{W}} + \stackrel{\rightarrow}{\mathsf{V}}$ $2. \ \vec{v} + \vec{w} = \stackrel{\rightarrow}{\mathsf{W}} \cdot \vec{\mathsf{V}}$
 $3. \ (\vec{v} + \vec{w}) + \vec{x} = \vec{\mathsf{V}} \cdot (\vec{\mathsf{W}} \cdot \vec{\mathsf{X}})$ 3. $(v + w) + x = v * (w * x)$

4. There is a vector $\vec{0}$ (the zero vector) such that $\vec{v} + \vec{0} = \vec{v}$. additive \overline{v} +. *Finct is a vector* \overline{v} (*the zero vector)* such that \overline{v} + (- \overline{v}) = 0 θ *r* $t\vec{v} \in \mathbb{R}^n$ *7.* $s(t\vec{v}) = (s_t)\hat{v}$ *8.* $(s+t)\vec{v} =$ *9.* $t(\vec{v} + \vec{w}) =$ *10.* $1\vec{v} =$ D.49 $\begin{array}{ccc} \n\text{``distributive} & \text{``s)} & \text{``s)} & \text{``s)} & \text{``s)} & \text{``s)} & \text{``s'} & \text$ propulsion " $(g. t(\vec{v} + \vec{w}) = f\vec{v} + f\vec{\infty})$ Ù .

 \star These rules help you do computations not just "concretely" but also "abstractly"!

Notes.

o Ztevo Vechor:
$$
\vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
 (eacy to check) (Not empty's)
o What should - \vec{v} be 3 If $\vec{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$, then $-\vec{v} = \begin{bmatrix} -v_1 \\ \vdots \\ -v_n \end{bmatrix}$

o We can voe those equations in both "directions".

[solutions added in "post-production"] C.F. pg. 8-14 in the textbook More examples. $0 \leq b \leq 1$ be the line between $P(D,1)$ and $D(-2, -1)$ in \mathbb{R}^2 . Find the Vector equation of L. Is R(3,4) on L? . What is to direction of the line? Le Try Findang QP. $\frac{d}{d\theta}$ $\vec{Q}\rho = \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \begin{bmatrix} -a \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ \rightarrow Now, translate by a point on the line, say $p:\mathbb{L}^6$. A Vector EQ for L. $\vec{x} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Some vector $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix}$ $Q(-2, -1)$

. Find the vector EQ of the plane country P(1,2,0), Q(2,1,0), R(0,0,1). Is D(0,0,0) on the plane? $\overrightarrow{RP} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \overrightarrow{RQ} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$ Vectors between points in the plane are linear combinations of RP and RQ! Then, franslate by a point in t plane, eg, R(O,D,()! so to vector EQ For this plane is $\begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix} + 4 \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} + \begin{bmatrix} 6 \\ 9 \\ -1 \end{bmatrix}.$ (see the plane)
totally shappe?) Is $O(D, D, D)$ in the plane? Well if $X = 6 = \begin{bmatrix} 8 \\ 8 \end{bmatrix}$, then: $\begin{cases} 0=5+2i & \text{subshord }N \text{ first } \text{Eq} \text{ from } N \text{ seconds:} \\ 0=2s+1 & \text{S-I=0} \text{ or } I=5. \end{cases}$ But the f=5=0, So 1=0... Which doesn't work! \Rightarrow $\boxed{\text{No}}$, not in the plane!